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A FINITE ELEMENT ANALYSIS OF LAMINAR UNSTEADY 
FLOW OF VISCOELASTIC FLUIDS THROUGH CHANNELS 

WITH NON-UNIFORM CROSS-SECTIONS 
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Department of Civil Engineering, Chuo University, Kasuga, I -  13-27, Bunkyo-ku, Tokyo 112, Japan 

SUMMARY 

The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform 
cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the 
constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used 
to analyse the flow. The novel features of the present method are the adoption of the velocity correction 
technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. 
This approach makes the computational scheme simple in algorithmic structure, which therefore implies that 
the present technique is capable of handling large-scale problems. The scheme is completed by the 
introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important 
to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the 
pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been 
computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is 
pertinent to point out that the present numerical scheme, along with the proper boundary condition for 
pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of 
viscoelastic fluid through a channel with non-uniform cross-section. 
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INTRODUCTION 

The interest expressed in the unsteady flow of viscoelastic fluid through abrupt expansions or 
contractions and other geometries such as converging-diverging channels is primarily due to the 
wide range of applications in the understanding of idealized industrial problems and the 
fundamental understanding of cardiovascular diseases. Further, the computation and numerical 
simulation of such problems, as well as an understanding of the underlying mathematical features 
of the equations used to model them, are very important for evaluating the consequences of 
choosing a particular constitutive theory and for analysing the resulting performance of the model 
in relation t o  experiments. In view of this, many investigators have developed numerous numerical 
methods to analyse the flow of viscoelastic fluid through a complicated geometry and obtained 
significant progress in marrying theory and experiment, at least as far as qualitative features of the 
flow are concerned. However, it must be admitted that severe problems remain and numerical 
simulation has been unable to meet many challenges posed in the experimental observations of the 
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flow. It is well known that one of the major unsolved problems in the numerical simulation of 
viscoelastic fluid flow is the breakdown of numerical algorithms even for modest values of the 
elasticity parameter. The possible causes of the breakdown have been attributed to the 
unsuitability of certain constitutive models, change of type of the governing equations, bifurcation 
phenomena, etc. as the Weissenberg number increases and the interaction between discretization 
error and non-linear iteration, none of them being final at the present time. However, in many 
ways the problem is still an open one in urgent need of attention, Hence, with a view to developing 
or improving the numerical technique to meet this difficulty and understanding idealized 
industrial chemical and polymer processes (with the aim of aiding in the design of such processes 
and the apparatus required to control or alter the polymer and chemical processes in a more 
precise way), a modest effort is made in the present analysis to investigate the unsteady flow of 
viscoelastic fluid and to check the suitability of the present numerical technique. 

The basic idea of the velocity correction method was originally presented by Chorin' for a finite 
difference scheme. Donea et Schneider and R a i t h b ~ , ~  Glowinsky et aL5 and Kawahara and 
Ohmiya6 have adapted the idea to the finite element method. Ramaswamy et al.' have developed 
the Lagrangian finite element method in which they used the velocity correction technique to solve 
problems involving the sloshing dynamics of viscous fluids. Ramaswamy' has analysed various 
flow models using the velocity correction method. In all these investigations'-* the rheology of the 
fluid is assumed to be Newtonian, but the boundary condition for pressure to solve the pressure 
Poisson equation is somewhat unclear. It is worthwhile to mention that the applicability of 
problems assuming the fluid as Newtonian is very limited in chemical and polymer industrial 
problems as well as in biological fluid flow problems, and choosing the proper boundary condition 
for pressure, especially at the outlet, is also important in understanding the flow phenomena more 
or less exactly. It is therefore pertinent to investigate the flow of non-Newtonian fluid with the 
proper boundary condition for pressure at an outlet with an open boundary. 

The two-dimensional flow of viscoelastic fluid has been studied by several research groups with 
mixed results.' Josse and Finlayson' have simulated the flow of a co-deformational Maxwell 
fluid using the finite element method and analysed the variation of only axial extra stress along the 
centreline for different values of Weissenberg number. A new algorithm for the solution of the set 
of differential equations governing the flow of viscoelastic fluid has been proposed without 
computational results by Townsend and Webster.' Crochet and Marchal' have numerically 
simulated the steady flows of viscoelastic fluids (Maxwell and Oldroyd-B models) and illustrated 
the results in the form of streamlines for various values of the Deborah number. A numerical 
method for solving time-dependent problems in one space variable for the Oldroyd-B model has 
been provided by T ~ w n s e n d ' ~  as a first step. Song and Y0014 have performed a numerical 
simulation of the flow of an upper convected Maxwell fluid through planar 4: 1 contraction and 
pointed out that as the Weissenberg number increases, the streamlines become flatter in the 
upstream region of contraction. Yo0 and Joseph" considered the same flow through a channel 
with wavy walls. It is of interest to point out here that the unsteady two-dimensional flow of 
viscoelastic fluid obeying the Oldroyd-B model, using the finite element technique in which the 
computational scheme is simple in algorithmic structure and cost-effective, has not been simulated 
numerically for the case of an open boundary at  the outlet. Further, many investigators have 
presented the computational results in terms of streamfunction/vorticity rather than in terms of 
the primitive variables such as velocity, pressure and extra stress fields. In view of this, it is of 
interest to investigate the effects of unsteadiness and the non-Newtonian nature of the fluid 
(Oldroyd-B model) simultaneously on the flow using the present numerical scheme with the 
proper boundary condition for pressure to solve the pressure Poisson equation. 
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BASIC EQUATIONS 

We consider a two-dimensional, unsteady, laminar, fully developed flow of viscoelastic fluid 
through channels with non-uniform cross-sections as shown in Figures 1 and 2. The equations 
governing the flow are (in dimensionless form) as follows: 

equation of continuity 

-+-=(); 
ax a y  

momentum equations in x- and y-directions 

au au au a p  p2 azu a2u ar,, aT,, -+u--+p--= --+- -+- +-+-, 
at ax ay  ax Rr(ax2 a y z )  ax ay  

av av au a p  p2 ( a 2 u  ;;%) ar,, ar,, -+u-++= --+- -+- +---+-; 
at ax ay  a y  Re ax2 ax ay  

r I  : u = u = 0 . a p / a n  f 0 

r 

r 

rz 

( o n  r l  : U # O  . U = O  , ap/an*O ) 

Figure 1. Geometry of channel with abrupt expansion 

( o n  r ,  : u f O  . u = O  , d p / d n # O  ) 

Figure 2. Geometry of convergingdiverging channel 
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extra stresses (for Oldroyd-B model) 

+ 21 We( Txx& + T ,Yay ") ' (4) 

1 We- aT,, =-( p, - du + -) a U  - Txy - 1 We( uax aTxy + u F )  aTxy + L We( 
Bt Re ay a x  

"'..-( ay 
Awe---- at 2- Re - -Tyy- lWe ('3 u-+u- a ~ ) + 2 A W e ( T y y G + T x y z  ; (6) 

where u and u are the velocities in the axial ( x )  and vertical (y) directions, p is the pressure, t is the 
time, p 2 (  = j12/j13 is the viscosity, j12 is the shear viscosity, fi, is the standard viscosity (Newtonian), 
Re( = f i f i o L ^ o / f i s )  is the Reynolds number, is the density, r?, is the characteristic velocity, Lo is 
the characteristic length, T,,, Txy and Tyy are the extra stresses, 1 is the relaxation time, 
We (= oo&/Lo) is the Weissenberg number, 2, is the standard elastic time constant and 
pl( =jll/jls) is the viscosity due to elasticity. (* over a letter denotes the dimensional form of the 
corresponding quantity.) The dimensionless retardation time may be obtained from the following 
relation: 

1, = I P 2 / ( P I  + P 2 h  (7) 

The boundary conditions (Dirichlet) are 

u = U ( Y ,  t ) ,  U=O,  T,,= T,,(Y, t),  T,~= T,,(Y, t) ,  T,,=o on rl, (8) 

u=v=O o n r , ,  (9) 
and on r3, u, u, T,,, Txy and Tyy are unknown. The terms I, Fx, and F,, are known functions. The 
entire boundary r is expressed as 

r=r,ur,ur, with rlnr2nr3. (10) 
For the entire (whole) solution domain, the initial conditions ( t  =0) are 

- 
u=uo(x, Y ) ,  v = ~ o ( x ,  Y ) ,  Txx=Tx,o(x, Y ) ,  

au, av, 
ax  ay 

- 
Txy=Txyo(x, Y) ,  Tyy= f y y o ( x ,  y) with -+-=o. 

FINITE ELEMENT FORMULATION 

Employing the purely explicit Euler first-order scheme in time integration, the velocity correction 
method and the Galerkin method for space discretization, equations (2) and (3) are transformed to 
a set of non-linear simultaneous equations as follows: 

Intermediate velocity field 

P 2  

as B (ii Re 
M P"' ' = Ma@$ - At -S V" + -C! - Aea$ + R:BT'&p + R&TYyB 
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pressure Poisson equation 

exact velocty field 

where 

aN,aN, aN,aN 
SUB = Jj( ax + ay $)dXdY, 

aN + 

the superscripts n and n + 1 indicate the corresponding values at the nth and (n + 1)th time steps 
respectively, C:, Cz and C; are the vectors of natural (Neumann) boundary conditions for the 
velocities and pressure respectively, N denotes an interpolation function and Mas is the lumped 
mass matrix obtained simply by summing across each row of the consistent mass matrix M,, and 
placing the results on the diagonal. In the present analysis, linear interpolation functions based on 
the three-node triangular element are employed. Hence N: = (Nl, N,, N 3 )  is the vector of the basis 
function. 

Utilizing the Galerkin method and the selective-lumping two-step explicit scheme for the 
numerical integration in time, the finite element equations for extra stress Txx are obtained from 
equation (4) as follows. 

For the first step, 

and for the second step, 

T n f l =  
aB X X B  
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and the superscripts n, n + 1/2 and n+ 1 indicate the corresponding values at the nth, (n+ 1/2)th 
and (n+ 1)th time steps respectively. In equations (17) and (18), Ma, means the mixed coefficient, 
which is expressed as 

where e is known as the selective-lumping parameter. Similarly, the finite element equations for 
extra stresses T,, and T,, may be obtained from equations ( 5 )  and (6). 

- 
Maa=eM,,+(l -e)M,,, (19) 

BOUNDARY CONDITIONS FOR PRESSURE 

We have considered the boundary consisting of rl (inlet), (wall) and r3 (outlet). It is of interest 
to mention that on r, and r2 the Neumann (natural) boundary condition for the pressure, for the 
first time as far as the present flow problem is concerned, has been incorporated in equation (14) 
through the weak form of normal pressure gradient obtained from the momentum equations (2) 
and (3). A careful examination of equation (14) shows that to solve the pressure Poisson equation 
(PPE), in the Dirichlet (boundary) condition for pressure at least at  one node must be prescribed 
because the matrix S,, is singular. Many investigators have numerically solved the Navier-Stokes 
equations and the flow of non-Newtonian fluids assuming that the value of pressure is equal to 
zero at the outlet (open boundary). Here we have used two types of boundary condition for solving 
the PPE. The first method is to compute the values of the tangential pressure gradient at all nodes, 
except one node at  which the Dirichlet condition for pressure (for example, p = 0) is prescribed, on 
the boundary r3 by taking the weak form of the pressure gradient (over the surface) obtained from 
the tangential (vertical) component of the momentum equation (3). Knowing the pressure value 
@=O) at the first nodal point, pr, and the tangential pressure gradient at the second node, (dplay), 
(neighbourhood of the first node on the open boundary r3), the pressure value at the second nodal 
point, ps ,  is computed from the formula 

P s = P r  +(aP/aY),(Ys-Yf), (20) 

where y, - y, is the vertical distance between the second and first nodes. Similarly, we can compute 
the pressure values at all other nodal points on the open boundary usingequation (20). The second 
method is to first obtain another pressure Poisson equation (called hereafter the PPEB) from the 
momentum equation (2) and (3) and the equation of continuity (1). The values of the pressure at all 
nodes along the open boundary r3 have been computed by the weak form of the PPEB over the 
surface-which includes the boundary r3 and its neighbourhood-using the known value of the 
pressure from the previous time step in the vicinity of the open boundary. Note that computing the 
value of the pressure gradient at the open boundary is not possible at the first time step by utilizing 
the weak form of the pressure gradient expression obtained from the tangential momentum 
equation (3), since although the velocities at the initial stage are known, those at the first time step 
are unknown. Thus it is not possible to compute the acceleration term av/at at the first time step. 
This means that one cannot use the first method above to compute the pressure gradient at the 
open boundary for the first time step. In order to overcome this difficulty, we have adopted the 
following procedure. For the first time step we compute the value of the pressure at the open 
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boundary by the second method, while for the remaining time steps we use the first method. We 
can use the first method from the second time step onwards provided we assume that the value of 
the pressure is equal to zero at the open boundary for the first time step. Further, the value of the 
pressure at the open boundary may be taken to be the hydrostatic pressure value. 

DISCUSSION 

Flow of Oldroyd-B Juid through a channel with sudden expansion 

For fixed values of Reynolds number (Re= 10) and relaxation time (A= 1.0), the velocity, 
pressure and extra stress fields have been computed with different values of solvent viscosity ( p t ) ,  
viscosity due to elasticity (pi) and Weissenberg number (We). The contours of the velocity, 
pressure and extra stress fields are illustrated in Figure (3-5) for different values of W e  and pl. At 
the outlet (open boundary) it is observed that an increase in pl leads to a decrease in the axial 
velocity near the wall and an increase in its value near the centre of the outlet. The magnitude of 

Fig. 3 (a+) 
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Figure 3. Contours of primitive variables for Re= 10.0, We= 1.0, p ,  = 1.0, p2 = 1.0, t=4.0, A= 1.0: (a) velocity field; 
(b) pressure field; (c) extra stress Txx; (d) extra stress Txy; (e) extra stress T,, 

the vertical velocity also increases with an increase in pl. Similar behaviour of the axial velocity 
and opposite behaviour of the vertical velocity are seen as We or p 2  increases. 

The area and length of the back flow region decrease as pl increases, but opposite behaviour is 
seen in the pressure drop between the inlet and outlet and in the magnitude of the extra stresses. 
The solvent viscosity shows a similar effect to p,, but its influence on the extra stresses is much less 
than that of pl. The area and length of the back Aow region increase and the pressure drop and the 
magnitude of the extra stresses decrease as the ratio of the retardation time (A,) to the relaxation 
time ( A )  increases. For the same value of the ratio AJA, the area and length of the back flow region, 
the pressure drop and the values of the extra stresses, for various values of pl and p 2  are quite 
different from each other, in contradiction to the previous observation. It seems that the individual 
characteristic values of the solvent viscosity and the viscosity due to elasticity play a crucial role in 
alteration of the area and length of the back flow region, the pressure drop and the extra stresses 
and that these flow characteristics are not significantly influenced by the ratio of the retardation 
time to the relaxation time for a fixed value of the relaxation time. 

The variations of the extra stresses along the lower (y=OO, O.O<x<7.0) and upper 
(y=2.0, 2 . 0 6 ~  <7-0) walls of the channel for different values of We, pl and p2 are tabulated in 
Tables I and 11. Careful study of Tables I and I1 shows that the percentage decrease in the xx 
component of the extra stress (TX.) along the lower and upper walls increases as the axial (x) 
distance increases for given values of We, p, and p 2 .  This percentage decrease in T,, decreases 
insignificantly (or significantly) for a higher value of pl or p 2  (or We). For fixed values of We, p1 
and p 2  it is seen that the percentage decrease in Txy along the lower and upper walls of the channel 
increases with an increase in x and its value is less (or more) for a higher value of We (or p1 and p2) .  
Further, the variation of T,,,, along the lower and upper walls is non-uniform and its magnitude 
increases as We or p1 increases. 
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Figure 4. Distribution of extra stress field for Re= 10.0, We=2.0, p, = 1.0, p2 = 1.0, t=4.0, A= 1.0 (a) extra stress Txx; 
(b) extra stress Txy; (c) extra stress T,, 

Flow of Oldroyd-B Jluid through a converging-diverging channel 

In the present flow analysis, the balancing tensor diffusivity technique has been incorporated in 
the momentum equations. The extra stress distributions for Re = 100, We = 1.0,3, = 1.0, p2 = 1-0 
and p1 =0.5 are shown in Figure 6. A study of these distributions shows that the extra stress T,, 
along the walls decreases as one moves from the uniform flow region to the converging section and 
then increases in the converging region. Its value continues to increase in the diverging section of 
the channel and then decreases in the downstream. Similar behaviour is observed in the case 
of T,. Non-uniformity of the decrease or/and increase in Tyy along the walls is observed for given 
values of We, p1 and p 2 .  Furthermore, the magnitude of Tyy is less than that of T,, or TXy (for the 
values of the parameters considered here). 
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Figure 5. Distribution of extra stress field for Re = 10.0, We = 1.0, pl = 2.0, p2 = 1.0, t = 4.0, I = 1.0 (a) extra stress Txx; 
(b) extra stress Txy; (c) extra stress T,, 

CONCLUSIONS 

The present numerical analysis investigates the flow of an Oldroyd-B model fluid through a 
channel with sudden expansion and through a converging-diverging channel. Computational 
results for velocity, pressure and extra stress fields with different values of Weissenberg number, 
solvent viscosity and viscosity due to elasticity have been presented. The proper boundary 
condition for pressure is developed and incorporated in the numerical scheme. It is of interest to 
point out that the flow of a Maxwell fluid (solvent viscosity p2 = 0.0) is a particular case of the 
present investigation. 

For the flow of a Maxwell fluid, it is believed that inclusion of the balancing tensor diffusivity 
(BTD) technique in the intermediate velocity field and the presence of extra stress gradients and 
their higher-order derivatives in the exact velocity field and the pressure Poisson equation 
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Figure 6. Distribution of extra stress field for Re= 10.0, We = 1.0, pl =05, p2 = 1.0, t =  1.0, A= 1 .0  (a) extra stress Txx; 
(b) extra stress Txy; (c) extra stress T,, 

respectively considerably improve the behaviour of the present algorithm. Furthermore, the 
presence of second derivatives in the extra stresses in the pressure Poisson equation automatically 
provides the Neumann boundary condition for the extra stress field if we use a linear interpolation 
function. A complete analysis of this treatment is under way and will be the subject of a 
forthcoming paper. 

For the first-order forward Euler scheme used in the time integration to analyse unsteady flow, 
it is observed that convective terms in the momentum and extra stress equations introduce 
negative viscosity, which ultimately reduces the physical viscosity of the fluid. In order to cancel 
out the negative viscosity due to the advective terms and obtain more or less exact results of the 
flow variables, we have to introduce a degree of artificial viscosity into the system of equations 
through a valid technique. In view of this, BTD and two-step explicit (TSE) techniques in the 
momentum and extra stress equations respectively have been introduced. It is of importance to 
note that BTD introduces a little more artificial viscosity than necessary and the accuracy of the 
computed results is less than that of the TSE method. Furthermore, the BTD technique always 
provides a stable solution whereas the TSE scheme sometimes may not give a stable solution. 
Hence the selective-lumping parameter is introduced in order to get a stable solution. It is seen 
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that the stability and accuracy of the two-step explicit method are dependent not only on the 
selective-lumping parameter e but also on the time step size, mesh size and other related non-linear 
factors. It is of interest to point out through an example that for the one-dimensional 
advection-diffusion flow problem, the artificial viscosity introduced by the two-step explicit 
scheme is given by (1.0-e)Ax2/6At. For a given flow problem and mesh size, the amount of 
artificial viscosity just to cancel out the negative viscosity is dependent on the parameter e and the 
time increment At. Experience shows that for a small time step size one can choose a large value of 
the selective-lumping parameter e to compute a stable solution with reasonable accuracy. On the 
other hand, the value of e must be small if a large time step size has been chosen, otherwise the 
amount of artificial viscosity could be more than necessary to exactly cancel the negative viscosity. 
In view of this, e=0.4, At= Ax=Ay=O.l  have been selected for the fluid flow through a 
channel with abrupt expansion, and Ax = Ay = 0.05, e = 0.4, At = 5 ~ 1 0 - ~  for the same flow through 
a channel with converging-diverging cross-section. One of the main questions under investigation 
is how to derive a formula to compute the proper lumping parameter value along with At for a 
given flow problem with a specific flow geometry and then make a modest effort to generalize the 
formula. This needs further careful analysis and forms part of our future research. 

Finally, it may be said that the present numerical method has successfully demonstrated the 
applicability of the scheme in analysing the unsteady flow of viscoelastic fluid in different 
geometries. The numerical method has lessened the problem of storage requirement in com- 
parison with other numerical schemes, and the formulation may be attractive owing to its other 
advantages. Moreover, use of the present numerical technique for other nowNewtonian fluids 
flow problems, including the non-isothermal case, solute transport, etc., is deemed promising. 
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